ラジオ系情報

基礎系情報

多種類リンク

Powered by Six Apart

« 2018年6月 | メイン | 2018年8月 »

2018年7月

2018年7月 9日 (月)

「8次ローパス フィルター MAX295」と NE612のダイレクトコンバージョン基板。NE612の発振確認した。

****************************

フィリップスのNE612を載せてみた。

046

7MHzで無事発振した。発振強度は0.46vほど。 奇しくもMAX295のOSC漏れとほぼ同じ。

047

+B回路はコンデンサー103を追加した。

このプロト基板でもコンデンサーを1個追加すればMAX295のOSC漏れ対応できるが、 それでは見た目が劣るので、新基板にする。

今月末までには手元に届くと想う。

********************************

音(信号)はデバイスを通過するたびに、余計な色付けされたり、色落ちもする。 JAZZも交響曲も生で聴くのが一番。

たまたま近所に JBL エベレストが2本あるので、そこでお茶飲みする。 

COSMOSブランドのラジオ。最新作が、yahooにある。

昨年は大河ドラマ脚本家からの取材で忙しかったが、今年はラジオ造りに注力するそうだ。

045_2

デジタル表示部には、 「基板ナンバー RK-01」が使われている。

014

2018年7月 8日 (日)

「8次ローパス フィルター MAX295」と NE612のラジオ基板。

SN16913式7MHz受信機(ダイレクトコンバージョン)の製作記事はここ

Sl16913rx04_2

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

50MHz AMトランシーバ記事はここ

21_2

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

本記事はNE612式7MHz受信機(ダイレクトコンバージョン)の製作記。

「MAX295の自励ノイズ流出対策案」もまとまったが、MAX295周辺のCR部品が増えて基板化をやり直した。

当初よりサイズが2.54mm大きくなった。

044

DBMではTA7320,MC1496, diodex4 と使ったのでNE612(NE602)にしてみた。 この基板でOSC確認ができれば、 上記基板の手配を行なう予定。

8次ローパス フィルター MAX295を通電し 電波ノイズを確認できた②。加算での波形。

MAX295はここで入手できる。

LPFとしての特性は良好。

********************

さきほどは、MAX295起因の電波ノイズに触れた。

MAX295に9V印加時でのノイズ強さについて明記しておく。電圧が下がればOSC強度も下がる。

1, オシロで確認。

0.5V程度は発生中。

032_3

2、

低周波発振器をOFFにして、

右:入力端  では0.05mV程度。

左:出力端  では40mV程度。  、、としっかり確認できる。

035

3、

上記2の状態で低周波発振器をONさせて信号を30mVほどいれてみた。

左は 加算されたことが判る波形。変調はされていない。  加算回路 と乗算回路での波形を参照。

036

加算回路で生成されたものならば、LPFやHPFで分離できる。

4,

信号を100mVほど入れた。  

SN的にはMAX295はAF後側に入れたほうがよさそうだ。 SP直前でもMAX295でクリップが起こらないならばOKだと想う。

039

考察:MAX295を入れるのはAF中段~後段がよさげである。

実験はこの回路で行なった。 これにOSCの流下を減少させる工夫を加えること。 40dB程度は減らしたい。

038

******************

追記:

コンデンサーを追加した。

041

◇◇

出力側では1mVレンジで0.1mV以下に下がった。 40mV⇒0.1mVに低減できたので1/400ほどになる。これで概ね50dB低減。

042

◇◇

5mVほどMAX295に入れてみた。 1.5dBほどロスるが、具合よい。

OSCの漏れ対策はコンデンサー1個で足りそうだ。 オペアンプでLPFを組む必要はないなあ。 RFCを1個入れてハイインピーダンスにしてSTOPさせてもよい。 部品数が1個で済むのでレイアウト上は助かる。

043

、、、とMAX295前後のCR値は定まった。

この内容を受けてラジオ基板化する。

8次ローパス フィルター MAX295を通電し 電波ノイズを確認できた。①

*****************************

8次LPFのデバイスが幾つか市場で販売されてるので、オイラも使ってみよう。

040

まず、このsiteの情報が役にたつ。 MAX295にしてみた。外部クロック(あるいは内蔵unitでosc)を使うので、その漏れがお邪魔になるかどうかの確認がスタート点になる。

国内ルートとしてRSコンポーネントで入手できる。

◇◇

1,

「MAX295は電波ノイズを飛ばし」て中波ラジオでしっかりと受信できることを確認した。


YouTube: MAX295起因の電波ノイズ

2,

次は周波数の特定になる。

この周波数で確認できた。 osc周波数は外部コンデンサーの値に依存するので、現時点ではこの周波数。OSC周波数を可変式にすれば、呼応して観測できるポイントが増える。

これで中波帯での使用は スポットな電波ノイズとの戦いになることが判った。

031

3,

アマチュア無線としての使用を考えるので80mバンドで確認してみた。

3.5MHZまでは電波ノイズとして上がってこないことも確認した。 ただし電源ライン(コールド側も)に重畳しないような工夫はmustだ。重畳してしまうと梃子摺る。

4、

5番ピン(出力側)にプローブで計測した。max295へは9V印加。

この周波数でoscしていることを確認した。C=180PFx2,すなわち360pFのコンデンサーがついている。

10倍~12倍の高調波が80mバンドに掛かってくるので電源ラインは要注意。 50オームプローブでは0.5v超えで観測できた。MC1496へのキャリア適正注入量(DSB時)が0.16V近傍なのでそれと比較すれば、充分に強さが判る。

032_2

5、

033

VTVM(600オーム)で観測すると出力側で8mVになっていた。(印加電圧4.5v時)。

もちろんIN側でも観測できるので、IN側からの逆流対策が必要になる。 

034

このまま無対策でAF AMPに入れるような事はちょっと、、ネ。

***********

考察: AF用デバイスではあるが、OSCの漏れおよび電波ノイズが観測される。したがって多少工夫が必要になる。高調波の電波ノイズによっては、受信できない周波数がスポットリーに発生する予測も必要。

OSC漏れはIN側でも確認できるので、逆流しない工夫もほしい。パターンの引き回し方を熟考する。

電源は単一の5V~12V間でごく普通に作動確認できた。 IN側への信号は1V印加でも歪まない。SNを考えると0.05V程度は印加したい。 

②に続く。

2018年7月 7日 (土)

三菱のIIL M54821Pを使った周波数カウンター。まとめ HF~87MHzまでok。 

31449105_1098782370261305_171933521

***************************

この4月2日から トライしていた「M54821P 式 ラジオ用周波数カウンター」の続。このM54821Pに関する記事では「模型とラジオ」1983年2月号 などが知られている。

OFFSETなしでの計測。LNAの負荷(高周波)は RFCの22uHにしたら従来より10dBほど感度が上がった。 

023

 2, SSGで最大印加時の上限周波数。 FM帯まで455KCオフセットの必要性は弱いが、作動確認してみた。 50MHz AM工作向きだと想う。RFCは1uHが良いのだが手元にない。

024

3,

 

025

4,

460KCオフセットも選択可能。

026

 5,

470KCオフセットも可能。

027

6,

001

ここに電流制限抵抗を配置した。トリマーは20PF推奨。

003

002

、、、と50MHz AM受信機工作向けの周波数カウンターになった。 中波/短波での計測OKではあるがダイナミック点灯起因のノイズが強いので3.5MHz~上がよいと想う。

offsetは上記のように455.460.470は選べる。この辺りはデータシートに記載がある。当初dpを使う予定がなかったので、IIL⇒電流制限抵抗(100オーム)⇒LEDにしたままだ。一桁上のチラつき抑制にトランジスタアレイ等を載せてある。offset 10.7MHzは 非対応。

通算256作例目。

IILで周波数カウンターを製作してみたい技術派向けに基板領布は7月10日から開始。 中波帯では電波ノイズが強い。(JA1AYO 丹羽OMの記事からもそれがわかる)。5連LEDは青、赤、黄緑の3色が流通しているが、ピュアグリーンは無い。

ラジオの組み込みでなく、周波数カウンターとしてなら350kHzから使える。LEDに100mA流れるので電源は0.2Aほしい。

030_2

真空管ラジオの「ブーン」という「ハム音」を消す対策は、これだっ!

Lafayette Explor-Air Mark V Receiver :VR絞るとハム音聞こえないんです。
YouTube: Lafayette Explor-Air Mark V Receiver :VR絞るとハム音聞こえないんです。

6AV6のゼロバイアス回路です。
普通の修理技術者だとこれがハム音標準です。これより聞こえるのは実装が下手です。

ハム音の原因を列記。

Photo

「実装する技術の優劣が判る」のがハム音。

******************************************

Q: 真空管ラジオ、真空管アンプ のハム音について教えてください。

 
 
 
 A :ワンポイントアースになっていないのが原因でしょう。
 
web siteを持つ修理業者でも、「アース実装が怒下手. アース線がループ施工。 6Z-DH3Aの配線だめ」のを販売しているのでご注意ください。
 
 
 
 
 
 
 
 
6Z-DH3Aゼロバイアスラジオでは、 VR閉時にはこの程度のハム音になる。


YouTube: 真空管ラジオ: 受信確認  VR閉時のハム音??

 上動画のハム音にならないようであれば、原因を確認ください。「主たる原因は実装が下手、修理が下手」

 
 

1、

球ラジオを100台超えて製作しVTVMでノイズ観測した結果では、ゼロ電位側(アース側 あるいは 接地側)が、渡配線(わたりはいせん)だとハム音が強い。

電子の移動に対しては、整列した平滑回路がmust。

2,
平滑回路のC容量の大小はかなり無関係。
平滑回路の段数が支配する分野である。 「47uf+47uf」の2段(計94uF)   よりも「4.7uf+22uf+4.7uf」の3段(計31.4uF) が、ハム音は弱い。  Cの合計値の大小とは関係が薄い。
 
 

00f9c18dd6a6e759939c2a383c49797a

 そこで ハム音対策に、2017年から上のように平滑回路基板を興した。RK-137で検索。
 
 
 
 
 
 
 
 ここにも記載済み。
 

******************************************************

 
 
 
 

2000年頃から公開されている情報だが、ラジオ工作派(ラジオ整備派)でも知らぬお方があまりにも多い。基礎知識不足のままだと「部品交換作業者」に為ってしまうだろう。オツムを使わない部品交換作業者には子供でも為れますね。

ST管の6Z-DH3Aの「ヒーター・ピンはどちらの方をアースすべきか?」が先達によって書籍化されていますので、ご一読をお薦めします。

「球から出るハムの対策」⇒ここ

市販品ですら間違っているのが、そのままに今も多数流通している。往時の技術水準は高くない。   真空管ラジオを手に入れたら、まずヒーターピンの確認してみることを推奨する。

真空ラジオではアンテナに誘起した0.1mV前後の信号を1W程度には増幅する。 真空管アンプでは100mV前後の入力信号を30W程度には増幅する。 つまりラジオの方がアンプより増幅度が1ケタ大きいので、アンプより技術ハードルが高い面がある。    audio ampで1kwなんてのはレアだが、無線では5kw,10kwはざらざらある。  オイラからみると真空管アンプはゲインがかなり小さくて技術ハードルは高くなさそうにみえる。

*************************************************************

yahoo等では「ハム音のしっかりと聴こえるラジオが取引されている」上に、「ラジオ修理者らもハム音に無頓着ぽいお方が非常に多い」。次の動画はWebで拾った。

代用マジックフィンガ
YouTube: 代用マジックフィンガ

まあしっかりとブーン音が聴こえくる。これは電源トランス式だが、かなり聴こえてくる。トランスレス?と想ってしまったほどだ。ラジオノイズだと想って聴いていたら全域で聴こえてくるので、ラジオノイズではないことが判る。このくらいのハム音ラジオが取引平均点。 配線ルートに注意すれば、これよりハム音が 下がるが、そこまで深く技術追及している修理者はweb上では見かけない。(測定器も持たないお方が圧倒的多数なので、煙も出ずに音が出ればOKのようだ)

オイラもハム音が10dBほど小さくなるように追い込んだ修理ラジオを出していたが、「ハム音の聴こえないメーカー製ラジオ」の市場ニーズが無いので辞めた。SNで10dBほど改善したメーカー製ラジオだが、市場では要求がないことも判明した。

さて、オイラの自作ラジオこの程度までブーン音は小さくなる。 ブーン音聴こえますか? これが残留ノイズ0.7mVの世界。上と同じく6WC5,6D6,6Z-DH3A,42。SNは10dBほど改善されている。

 IF2段式だ。6D6を2本載せているので上記ラジオより20dBほど感度は良い。「感度良くて、ハム音が小さい」。これが技術の差。メタル管ならこの半分のノイズ値。

真空管ラジオのブーン音はどこまで小さくなるか?

YouTube: 真空管ラジオのブーン音はどこまで小さくなるか?

このレベルまで静かになると3端子レギュレータIC起因ノイズの有無がわかる。


YouTube: ハム音の比較にどうぞ

ラ ジオの残留ノイズは0.3mVまでは比較的簡単に下がる。ソレノイドアンテナ仕様だと雑多なノイズを多々拾うが、バーアンテナではそうならぬ。結果SNが 良い。 1KW中継局から35Km離れた鉄筋住居でラジオ放送を受信している。SPは「3wayのオーディオ用」を使っているので、60Hzや120Hzは  「安価なラジオ用SP」よりもしっかりと音が出る。

往時の16cmスピーカならばもっと低域は聴こえない。

audio用3way SPで聴いて、このレベルのハム音だ。

Ans01

電源トランス搭載ラジオで、無受信時にハム音がそこそこ聴こえるのはかなり論外。自作では、「ハム音は、ラジオノイズに隠れて聴こえない」水準でまとめることが出来る。

トランスレスラジオなら、ハム音がそこそこ聴こえるのはまあ普通。 ハム音の大小は測って数値でみること。ハム音が大きい或いは小さい等の表現は感性によるものゆえに、少しも科学的ではない。科学的な電気品を評価するには、測定値での優劣評価が普通。

ラジオ修理しているのが素人多数だから、カスを掴むことも多々あるだろう。残留ノイズ値に言及しないのが素人。(言及出来ないからダンマリ状態)。修理者モドキによるラジオが市場を寡占している。

★「中間周波数増幅が2段のロクタル管ラジオ」の残留ノイズが、0.3mV程度。メーカー製ラジオよりSNは20dB良い。

039

通常、デジタル表示器はノイズ源に充分なるが、この表示器はノイズ源に成らない稀有なタイプ。

**************************************

ハム音を減らすための基礎情報を中心に記してあります。

性急に答えだけを探す方には不向きです。ラジオ工作は、経験を積んで会得する世界ですので、悪しからず。「教えて君」向けには記述していません。

経験上、ラジオのSNはバーアンテナ >> ソレノイドコイルなので、電波雑音少なく聴きたいかたはバーアンテナ化してください。

ブーン音の大小の目安にどうぞ!

12Z-E8  マジックアイ RE-860
YouTube: 12Z-E8 マジックアイ RE-860

トランスレスラジオのブーン音は上の動画程度。これより大きかったら「技術のあるプロにお任せ」を推奨します。

********************************

真空管ラジオのハム音を減らす方法としては幾つかの方法がありますが、

★ハム音は、ラジオメーカの実装技術に依存する処が大きいですね。

(局所集中アースになっていない実装が目につく⇒それゆえ、手直しした方が良いですね)

整備品と称して高ハム音になるようにヒーター配線してあるラジオもyahoo出品されていますので看る側の知識と技能が必要な時代です。出品者に残留ノイズ値を問いて確認すれば早い。(オイラはお尋ねしたことがある。回答が得らねぬまま、ブラックリスト入りしてしまった。)

★加えて、12AV6(6AV6)を使うとVRを絞っても球内部の結合により音が絞りきれないので、その対策に7ピンに100PF~200PF程度を吊るしてある。これがLPFを形成して高域が弱まり低域が強調されてブーン音が耳につく回路になっている。この100PFをつけたり外したりしてラジオを聴くと,結構高域の違いが分る。(機種によっては1000PFがついていた)

また、AVC定数と音声負荷が同じ経路なので、時定数のCRが信号ラインに吊り下がる。

もっとフラットな音域特性に改善した方が好ましいとオイラは想う。(そこまでこだわる製作者はweb上では皆無に近い)

フラットな音を望む方は、手を入れた方がよい。(高域が垂れ下った音が好みならばそのままでok.   鳴ればokとするuserが多いのが実態らしい)

ラジオで使う小型OUTトランスは特性がフラットでなく山谷があることが多い。それも含めて200Hz~3kHzで3dB以内にはまとめたいと想う。

音の歪み面からみると、AVCと音声出力が同じ回路だと不利。 音質的には別回路が好ましい。(50年前の先達の記事にも書いてある)

(オイラの6AV6、6SQ7を使った自作ラジオは、AVCと音声出力は別回路)

★トランスレスラジオであれば、+Bのリップルをオシロで実測して対応を考えます。無闇に+Bのコンデンサーを増やすことは薦めません。トランスレスラジオの+Bリップルが200mV程度であれば配線の引き直しで、ハム音がかなり下がります。

「分る方には分る」文面で申し訳ないです。ブーン音を下げるにはオシロとVTVMは必須です。(測定器の示す数値を見ながら追い込む)。低周波増幅初段の真空管のヒーターピンの2本中、接地すべきピンが接地されているかを確認する。メーカー製でも誤っているのを入手した経験をオイラにはある。

電源トランス搭載の真空管ラジオ(メーカー製)で、出力トランスと電源トランスが接近していてブーン音がでてくるラジオも体験した。

メーカーでも、ブーン音対策完璧と言う訳ではない。

★真空管ラジオの+Bラインを印加せずに、 ヒーターラインだけ生きている状態にさせてみたことありますか? その時にスピーカーからブーンがどの程度聴こえますか? 

その音量が、現部品レイアウトでの到達可能な最少ブーン音であろう。

なぜなら 球の増幅度はゼロであるから、、、、、純粋なブーン音を聞くことができる。

 

 配線だけ手を加えても、ブーン音はこの状態(ヒーターラインだけ)より小さくは成らない。「電源トランス⇔出力トランスの配置」を換えると増えたり減ったりするので、レイアウトに依存している。

★VRを絞ってのsp端でのVTVM読み。(パワートランス式の所謂、残留ノイズ)

これは、オイラの自作ラジオ(IF2段)だと0.3mVくらいのVTVM値になる。(自作当初は1mVを下回らなかったが、20台超えたあたりから数値が低くなった).

2バンドにしてバリコン周辺の配線長が長くなると0.6mVくらい。稀に2バンドタイプでも0.3mVに納まる。 高一レフレックスだと0.1mV.

IFが1段しかないラジオだと0.3mVより少なくて普通。0.7mV超えるようなら実装が下手だろう。(稀に球がノイジーなこともある)

自作したラジオでは、80年代のステレオ用の3waySPを鳴らしているので球種による音の違いも聞き比べています。

トランスレスラジオでは12AV6のヒーターピンを確認。接地しているピンNOを確認する。

12AV6の低ハム側ヒーターピンが接地されていればOK.

(差があるのは当然ご存知ですよね,知らぬなら学習されたし)

平滑回路の段数を3段にする。⇒RADIO.ERX氏に記事あり。tnx to radio.erx.

5~10段平滑も実験したが、電源トランス搭載ラジオでは3段で充分。トランスレスラジオは3~4段。(+Bが下がるので様子を見ながら決める)

TR式リップルフィルターは教科書通りには成らず。⇒メリットは薄い。

配線ルートを直す。(局所1点接地化)。VR外装の接地はnoisyになる傾向が多い。

★「ブーン音を減少化したメーカー製ラジオ」を時々出品していましたが、ニーズが無いので止めました。(yahoo上では、ハム音の聴こえないメーカー製ラジオを求めていないのが判った)。  減ブーン音化することなくメーカー製ラジオ整備出品します。悪しからず。 

出品中の商品はこちら

ブーン音で手に負えないようでしたら、ご相談ください。代わって治します。

メール

*****************************

スイッチング電源はノイズを周囲に電波で撒き散らすので、当然使えない。(撒き散らしても気に留めないお方はどうぞご自由に)。100vラインにもがんがんと重畳して行くので何十m先で減衰するのかは実測してくださいな。

ハムのブーン音も定量に測ると面白いですね。

メーカー製トランスレスラジオのSP端では、ハム音が6mV~30mV出てますね。

基板タイプの真空管ラジオは概ねハムノイズが高めですね。

下の写真は、VRを絞ってSP端で計測してます。

234

上の写真は、メーカーさんの市販ラジオを測ったもの。

SP端でVRを絞っての、波形。VTVM読みで8mV程度ありますね。

みごとにACの波形。

AC100Vの波形によく似てますね。

ヒーター起因のリップルが僅かですが見ることができます。

メーカー製のトランスレスラジオは、だいたいこんな具合です。

配線ルートがよくない場合には30mVくらいのブーン音がしてますし、そういうラジオも修理済み良品として流通してます。

配線ルートを変えて4mV程度まで下がるラジオも、実際にあります

②トランスレスでメーカー製真空管ラジオに手を加えて2.5mV~3mVに下げたラジオ。

034

下げる意志があれば、ご自分の努力でブーン音レベルは下がります。

対策方法は本site上にはupされています。お調べください。

下の写真はオイラの自作MT管ラジオ。0.7mVくらいです。(電源トランス搭載)

233

ヒーター起因のバースト波形です。

「メーカー製ラジオ」と「オイラの自作ラジオ」では、

波形が異なるのが判りますね。

これもオイラのMT管ラジオ。(電源トランス搭載)

121

0.35mVくらいです。

電源トランス搭載の自作ラジオを製作し始めた2011年頃は、1.5mVくらいありましたが

最近は1mVを軽く切るように実装できてます。

★真空管のラジオやアンプを造っていると、いろいろな波形に遭遇して面白いものがありますね。

100

↑非通電時の電源トランスの2次側です。

ACコンセントにプラグを挿すだけで、この程度のリップルがトランスの2次側に出てきますね。

電源SWはONしてありませんよ。AC100Vは、もっと綺麗な波形ですね。

この波形はバーストしてますね。そこそこの電圧になっているのが、オシロから読めます。

長らく真空管に携わっている方は、この事象にみんな気づいているはずですね。

皆さん、どう対策されているのでしょうか、、。気になりますね。

101

このバースト波形の対策をした自作品は、今のところは、これこれだけです。

「非通電状態でのバースト波形」の理由は、判りますよね。


★下の写真は、

ヒーター電圧をシリコンブリッジでDC化を狙ったのものです。

6.3Vにたいして、リップルが0.1VもあってDCとは言えませんが、

平滑回路の定数は、標準的なものです。⇒記事

リップル率は、0.1/6.3x100%=1.6%もあります。(実際には、0.1V/5.1Vx100%なので2%です)

AC6.3Vを整流しても、平滑抵抗の値が高く取れないのでヒーター波形はこんな波形になります。

024_2

整流回路では、 整流ダイオード相当分の電圧が下がるのは、ご存知ですね。

シリコンブリッジだと0.6x2=1.2vほど低下しますね。

半波整流でも0.6V低下するので、ヒーター電圧6.3Vのトランスに整流ダイオードを入れてしまうと6.3ー0.6=5.7Vになります。6.3V球を5.7V駆動させると動作が弱くなって全体の耳が大幅に悪くなります。 耳を大幅に犠牲にできるならば、採用できます。

6.3V端子にシリコンブリッジを入れて6.3ー1.2=5.1Vにするとで5V球で構成できて具合がよくなりますが、真空管に5BD6や5BE6がないので ヒーター端子6.3Vに整流素子を入れるのはかなり困難です。

それゆえに、「10Vとか12Vとかの電圧を掛けて、6.3Vまで下げて使う」ならヒーターDC化もよさそうですね。

★もう一つ、AFに6AW8を用いて,

オシロでの波形をUPします。⇒過去記事

0 RCAの6AW8を挿した波形↑

012 シャープの6AW8を挿した波形。↑ 上と時間軸は同じです。

015 RCAの6LF8を挿した波形↑

突き詰めると、「球に起因する」ってことですね。

OUT側にリップルを出しにくい球を使うことがベストですが、

これは実測するしかありません。

+Bの低リップルもそれなりに効果あります。

下の写真は自作6球ラジオの+Bラインのオシロ実測です。

232

シリコンブリッジ整流の120Hzが見えません。 

この程度まで低リップルするとSP端でのハム音は静かになります。⇒記事

「どの程度までリップルを下げるか?」は、「どのていどの残留ノイズにしたいのか?」に関係してますが、自作ラジオであれば+Bリップル2~3mV程度には下げておいたほうがよいですね。

★0.1mVの残留ノイズでも

スピーカーに耳を密着させてると聴こえるので、ヒトの耳は凄いですね。

★概ねラジオではSP端で1mVを割れば、受信ノイズに消されるのでOKだと思います。

オーディオだと0.3とか0.2mVあたりまで下げないと苦しいだろうと思います。

★市販のトランスレスラジオのハム音を下げる方法は、この記事中にあります。

★電子の移動方向は「マイナス⇒プラス」なのはご存知だと思います。

 経験上、ハム音は、マイナス側の微小電位差に起因していることが推測できます。

「その微小電位差が測定器で測れるか?」は、全くの謎です。

******************************

で、真空管のゲイン測定をしてました。

102

↑6EW6です。この球で、この回路だと25dbでした。

別の球で、別の回路では33db取れてました。

103

↑6DK6です。この球で、この回路だと28dbでした。

球のIpが少ないと後段にゲインを吸われてしまいますね。

104

6BA6は、6DK6よりゲイン取れませんね。 バルボルの読み通りです。

***************************************************

半田工作の実装基本だけど上げておく。

①6Z-DH3A(6AV6)のヒーターピンはどちらを接地するか

②平滑回路のCOLD側とブーン音。いわゆるハム音。

*******************************

TOP PAGE

2018年7月 6日 (金)

6SA7のワイヤレスマイク。

********************

6sa7のワイヤレスマイクを自作した。

022

6J5(6C5)の手持ちが少ない。

ノイズが判らない3端子レギュレータに換装した。

Hgdmarvawqdqu5

***********

過去使用経験から、3端子レギュレータは「ノイズが出るメーカー」と「出ないメーカー」に大別されると想う。正確には「ノイズが出ていても判らない製品」と呼ぶとは想う。 

「3端子レギュレータはノイズが出ない」との文字で印刷物が刊行されているが、「実測数が不足している」或いは デスクワーク派の可能性もある。 まあ、実測するとノイズ観測できるものが多い。 ノイズが出てラジオ受信に支障のある製品を誉めることは困難だ。

先ず測る。そして思考する。オイラのようなおっさんにはこの方法が似合っている。

AF用デバイスだが 電波ノイズをしっかりと飛ばすICもある。

***********************

今年2月にまとめた 電池管1R5 トランスミッター(基板ナンバー RK-11)において、ヒーター1.4Vを生成している3端子レギュレータがノイジーなので、メーカーを変えた。

LM338を使っていたが無音声時のホワイトノイズが常々気になった。 メーカーを換えてもnoisyならばTRAPを数段重ねて、ノイズを交わしたい。

015

低ノイズ(ノイズが判らないこと)での実績多数なSTマイクロ製にした。型式は317T。

016

 

017

018

◇◇

右が1R5トランスミッターに入れた信号。

左がST管ラジオから出てくる信号。

019

◇◇

低周波信号発生器を電源OFFしてみた。 聴覚上ホワイトノイズは判らない。 細かい波形はキャリアによるもののようだ。

020

1R5トランスミッターの電源OFFしてみた。

021

、、とSTマイクロの製品は今回も良好だ。可変電圧タイプでは317Tを推奨する。

推奨メーカーのひとつである。

2018年7月 5日 (木)

大町ダムは洪水貯留操作開始中。

年間降雨2000mmがこの地域の平均値。

今日の大町ダム。 ここで公開されている。 ライブカメラはこれ

開口断面で放水量が定まる。510㎥/秒が常用上限らしい。

009

現状は流入が300㎥/秒と 放水量の1.5倍ほどの雨水が流入中。

010

この地点だと300㎥/秒 は時々観測されている。

来週は県庁にて河川防災について相談。、、とオイラは田舎にいる普通のおっさんだ。

************************

信濃川は、佐久平の千曲川、 上高地からの梓川、 槍ヶ岳からの高瀬川の流水を集めて日本海に流れ込む。

 、、と3河川同時に大量放流すると 新潟との境で 拙いことになるので、放流時差を持たせている。、、とダムマニア向けの情報も上げておく。

犀川河川では陸郷の水位が黄色マーク。

011

012

2018年7月 2日 (月)

AM/SSB 2モード 受信基板を受信周波数表示させてみた。LCD表示器RK-01。

***************************

先月15日から領布開始した 「基板ナンバー RK-17」はAM検波をTA7613,プロダクト検波をTA7320で行なっている。

「基板ナンバー RK-01」が中波~VHFまで -455KCで作動するが表示が4桁しかない。 中波~9.999MHzが使い安い。

基板ナンバー RK-17には、周波数カウンター用のTPを持たせてある。 回路図を眺めた方は気ついて使っているはずだ。


YouTube: AM/SSB 2モードラジオ基板の受信周波数を表示させた。

動画のように しっかりと表示される。 電源ON/OFFしてもOSC周波数はさほど暴れない。 ポリバリコン+セラミックコンデンサーでもこの程度は安定している。スチコンやエアバリコンを使うと更に良い。

014

RK-01には信号ラインのみ結線。アース側の結線は必要ない。

「RK-17」のOSC強度はオシロ読みで1V弱を狙っている。これはLA1600のself oscが1V近傍だったことからそうした。 LCD表示器は0.2~0.5V程度の入力が望ましい。OSCエネルギーの分配具合によるが適正な強度でLCD表示器に掛かっているようだ。

この基板のようにAM あるいはSSB どちらかの電波形式で受信選択できるものを TWO MODEと呼ぶ。

dual(デュアル)モードと呼称しない。異なる2つの電波形式で同時に同一周波数受信音として流すならばデュアル(2重)モードになるが、 それじゃ混信しているのを聞いているのとイコールになる。

dualは双対。

出品中の商品はこちら

2018年7月 1日 (日)

乱狂 太郎(ランクル タロウ)の 電子工作バイブル

****************************

神戸電子サービスのSITEが消えて久しいが、作者はそのオーナーとのこと。 随分と年配の方だと文中からも判る。

003

「月刊アクションバンド」の人気コーナーを刊行したので、 その読者層向けに書かれている。

gmとcpgのことも書かれており、近年雑誌では抜け落ちていることにも焦点を当てている。(1950年代での当たり前のことが近刊行本では記載ないことが目立つ。結果として技術継承が途切れる)。手に入れておいたほうが良いと想う。

 ネジ締結では使用NGであるスプリングワッシャーを、推奨するような非科学的な寄稿もあるラジオ工作の世界であるゆえに、基本は自力にて積み重ねるしかない。3行超えの文章が理解できない方々が増加中だとの話も聞く。 

LA1600ラジオや ダイレクトコンバージョン受信でのAF部はTDA2611です。

************************************

オイラが好んで使う TDA2611(フィリップス)は 欧州/USAでは標準的だと想う。TEN-TECではTDA2611が結構使われていた。出力0.5W前後の歪率と価格との天秤では優秀なICだ。 タイ国で生産しているので至って廉価なTDA2611だが、日本では流通が弱い。タイ⇒日本へのルートに乗らないらしい。セカンドリソース品もあるが日本に上陸して来ない。

日本製で選ぶならば東芝のTA7222やTA7252辺りになると想う。

TA7252が秋月にあったので、1度くらいはつかってみたい。TA7222も国内にあった。総じて日本メーカーのデータシートは控えめなものが少ないように想う。 

001

上の検討中3点(DSB小型トランシーバー基板等)は基板手配した。下基板はIC到着待ちだ、日本国内には全く在庫がないようだ。

002

ウェブページ

カテゴリ